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1. Motivation 
 
The UMIACS wiki contains a wealth of valuable information, but its organization across 
numerous pages can make finding specific details challenging and time-consuming for users. 
Developing a chatbot to address this issue presents a transformative solution that not only 
enhances accessibility but also optimizes user efficiency. By enabling users to ask questions in 
natural language and receive precise, context-aware responses, the chatbot eliminates the 
frustration of sifting through multiple pages manually. For questions that are beyond the scope of 
the wiki and require human expertise, the chatbot directs users to contact UMIACS staff, 
ensuring that complex or unique issues are addressed adequately. Thus, this user-friendly tool 
would save time, reduce barriers to information, and make the wiki’s resources more 
approachable. It will also alleviate the burden on UMIACS staff by automating responses to 
repetitive inquiries, enabling them to concentrate on more complex tasks. Ultimately, this 
innovation would amplify the value of the UMIACS wiki, creating a more dynamic and efficient 
resource for the users. 
 

2. Literature Review 
 
Chatbot development has advanced significantly with recent breakthroughs in natural language 
processing research. Several state-of-the-art techniques are now available for building highly 
capable chatbots. While fine-tuning pre-trained language models and Retrieval-Augmented 
Generation (RAG) are among the most prominent and effective methods for chatbot 
development, other innovative approaches, such as transfer learning, domain adaptation and 
zero-shot learning are also being used to create versatile and domain-specific conversational 
agents. For our chatbot development, we look at two main approaches and conduct a literature 
review.  
 

2.1 Fine-tuning on Pre-trained Models 
 
Vulić et al (2021) propose a two-stage fine-tuning approach to enhance pretrained models for 
chatbot applications. First, the model is fine-tuned on general conversational datasets to adapt to 
dialogue-specific dynamics, followed by task-specific fine-tuning to meet application 
requirements. Data augmentation techniques, such as synthetic dialogue generation and 
paraphrasing, improve training data diversity and robustness. Evaluations show ConvFiT 
significantly enhances response fluency, coherence, and task success rates, outperforming 
baseline methods. This framework effectively adapts pretrained models for scalable and versatile 
chatbot deployment. 
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There are comprehensive frameworks like LlamaFactory that support efficiently fine-tuning and 
customizing large language models (LLMs) like GPT, LLaMA, and OPT for specific tasks and 
domains. LlamaFactory supports over 100 models and leverages parameter-efficient techniques 
such as LoRA and adapter layers to reduce computational costs. Featuring a user-friendly 
interface, LlamaBoard, it streamlines fine-tuning, model selection, and benchmarking while 
supporting data augmentation for robust training. With tools for scalable deployment and 
multi-model experimentation, LlamaFactory simplifies the development of chabots.  
 

2.2 Retrieval-Augmented Generation (RAG) 
 
Lewis et al. (2020) introduced RAG as a method to overcome the limitations of traditional 
pre-trained language models, which, despite encoding factual knowledge, often struggle with 
efficient knowledge retrieval and manipulation. RAG integrates parametric memory (via a 
pre-trained seq2seq model) with non-parametric memory (using a dense vector index like 
Wikipedia), facilitated by a neural retriever. This dual-memory approach allows RAG to access 
and incorporate external knowledge explicitly, enhancing the model's performance in 
knowledge-intensive tasks such as open-domain question answering (QA). The paper 
distinguishes between two RAG methodologies: one that uses a consistent set of retrieved 
passages across a generated sequence and another that retrieves different passages for each 
token. Their findings indicate that the latter approach, which dynamically retrieves 
context-specific passages, significantly improves performance over static methods, 
demonstrating RAG’s effectiveness in generating coherent and relevant responses. 
 
Ke et al. (2024) focus on the practical implementation and evaluation of RAG in various settings, 
showcasing its adaptability and performance improvements. Although their case study is set in a 
medical context, the methodologies and findings are broadly applicable. They demonstrated that 
an RAG-enhanced GPT-4.0 model could achieve a significant accuracy improvement over 
standard models, with results showing a substantial increase in performance when RAG was 
applied. The case study emphasizes the efficiency of RAG models, noting that they can generate 
answers more quickly compared to traditional methods. This efficiency, coupled with improved 
accuracy, underscores the potential of RAG for enhancing LLMs' performance across different 
applications, reinforcing the benefits of incorporating external knowledge sources. 
 
There are open-sourced frameworks like RAGFlow designed to facilitate Retrieval-Augmented 
Generation (RAG) by integrating large language models (LLMs) with deep document 
understanding. It streamlines the RAG workflow, enabling businesses to extract accurate, 
citation-backed information from complex, unstructured data sources such as documents, 
images, and web pages. One of the standout features of RAGFlow is its template-based 
chunking, which makes the document segmentation process more explainable and flexible, 
allowing for human intervention if needed. This ensures that the generated responses are not only 
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accurate but also grounded in verifiable sources, reducing hallucinations often seen in LLMs. 
Moreover, its compatibility with heterogeneous data sources, including text, images, and 
structured data, makes it a versatile solution for businesses seeking to integrate RAG workflows 
into various applications. 
 

2.3 Hybrid Approaches 
 
Rangan et al. (2024) combine the capabilities of retrieval-augmented generation (RAG) with the 
precision of a vector database and the nuanced understanding of a fine-tuned large language 
model (LLM). The process starts by extracting text from a PDF document using PyMuPDF, 
which is then processed in two parallel pathways: one creates a vector database with Chroma for 
efficient content retrieval, and the other prepares the data for fine-tuning the LLM on a 
customized dataset. This dual-pathway approach integrates structured data retrieval with the 
contextual learning of the LLM. 
 
When a user submits a query, the algorithm engages both pathways to generate responses. The 
vector database retrieves relevant content based on similarity, producing a direct, data-driven 
answer ("answer 1"), while the fine-tuned LLM generates a context-aware response ("answer 
2"). These two answers are synthesized to leverage the precise retrieval from the database and 
the fine-tuned LLM’s nuanced understanding. This combined content serves as input to a 
foundational LLM, which, although not fine-tuned for the task, uses the synthesized insights to 
generate a final response that is both accurate and contextually rich.  
 
Kulkarni et al. (2024) presents a RAG-based approach for building a chatbot that leverages FAQ 
data to answer user queries, optimized for cost efficiency and retrieval accuracy. The system 
integrates an in-house retrieval embedding model trained using infoNCE loss, which outperforms 
general-purpose public models in both retrieval accuracy and out-of-domain (OOD) query 
detection. The chatbot uses the GPT-35-Turbo model as its LLM for generating responses, while 
retrieval optimization is achieved through a reinforcement learning (RL)-based policy model 
external to the RAG pipeline. This model dynamically decides whether to fetch FAQ context 
([FETCH]) or skip retrieval ([NO_FETCH]) based on the query and prior context, reducing 
token usage and associated costs. 
 
The RL model, trained using a policy gradient approach, evaluates its actions through GPT-4, 
which serves as a reward model by rating the quality of chatbot responses. Reward shaping 
ensures that accurate, cost-efficient answers receive positive rewards, while poor decisions (e.g., 
skipping retrieval when necessary) are penalized. Experiments with GPT-2 and an in-house 
BERT model as the policy backbone achieved significant (~31%) cost savings while slightly 
improving accuracy. Although demonstrated on an FAQ chatbot, this generic RL-based 
optimization approach can be adapted for any existing RAG pipeline.  
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3. Project Goals 
 
The primary goal of this project was to develop two chatbot systems capable of answering 
questions based on information from the UMIACS wiki. To achieve this, we set out to: 
Build tools to scrape and extract data from the UMIACS wiki. 
Process the extracted data into structured formats suitable for training and evaluation. 
Implement systems that can effectively answer questions using both retrieval-based and 
model-based methods. 
Establish a comprehensive benchmark for evaluating the performance of question-answering 
systems on wiki-based datasets. 
These goals aimed to create robust and scalable solutions for wiki-based information retrieval 
and question answering. 
 

4. Approach and Results 
 
Our approach involves exploring two primary techniques—Retrieval-Augmented Generation 
(RAG) and fine-tuning—for developing the UMIACS Wiki chatbot. We detail the iterative 
process undertaken to refine and optimize each of these models, highlighting the challenges and 
improvements at each stage. Finally, we introduce a hybrid approach that integrates RAG with 
fine-tuning. 
 

4.1 Scraping the Wiki 
To accurately and efficiently scrape the UMIACS wiki, we implemented a Python-based 
scraping pipeline, utilizing libraries such as BeautifulSoup to navigate the wiki's structure and 
extract relevant information. The scraper was originally designed to recursively traverse the wiki, 
identifying and capturing content from linked pages while preserving the hierarchical 
organization of the data; however, this wiki had a page containing links to all other pages. We 
used that page to scrape all pages on the wiki and tossed out any redirects that lead to the same 
page. Special attention was given to parsing structured elements such as tables, headings, and 
lists to maintain the semantic relationships present in the wiki. We also ignored images present 
on the wiki as they usually contained information that was already present in the wiki’s text. The 
extracted content was preprocessed to remove irrelevant data, standardize formatting, and 
prepare it for downstream tasks, such as question-answering and training models. Error-handling 
mechanisms were integrated to address potential issues like missing pages or inconsistent 
formatting, ensuring a robust and reliable scraping process. 
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4.2 Retrieval-Augmented Generation (RAG) 
 
The process of implementing retrieval augmented generation involves converting the document 
texts into vectors, then storing the vectors with the original text in a database for future querying. 
When the chatbot receives a question, it translates this query into a vector, then performs a 
similarity search on the vectors that were previously stored in the database. The original text 
from the retrieved vectors are then provided to the LLM as context, which improves the accuracy 
of the output. There are multiple libraries that can be used for RAG, and we decided to use 
LangChain due to its integrations with different vector databases and support for LLM pipelines.  
 
To begin with, we manually split our documents into 128 token chunks, and converted them into 
vectors using the sentence-transformers/all-MiniLM-L6-v2 embedding model, which has a 
maximum context length of 256 tokens and vector embeddings with 384 dimensions. The reason 
we use 128 tokens is because the model was trained using sequences of 128 tokens or shorter. 
The two main drawbacks of this approach was that sentences were typically split between 
chunks, and 128 would usually not include enough context. 
 
In order to rectify these issues, we switched to using LangChain's 
RecursiveCharacterTextSplitter, which attempts to keep size within a target size by only splitting 
on specific separators. By default, it prefers to separate on "\n\n", "\n", " ", and "", in decreasing 
order of priority. However, we noticed that the chunks it produced were sometimes far greater 
than 128 tokens. This was primarily because when we converted the original HTML into raw 
text, we did not add in newlines. Since HTML elements themselves are what creates line breaks, 
we just had to add newline characters whenever those breaking elements were seen. 
Additionally, we combine consecutive newlines into one or two newlines. We tried different 
numbers of consecutive newlines to convert, and the line breaks in our translation are close to 
how sections look in the browser. From our testing, this kept paragraphs and short sections 
within single chunks.  
 
Even with a more advanced chunking method, some query results were suboptimal. One in 
particular is the query, "how do I run a python notebook in nexus?". Parts of the true answer do 
not include words related to python notebook, so those chunks are not included. The model also 
seemed to consider "python notebook" and "jupyter notebook" as not very similar. Furthermore, 
chunks that mention "Nexus" a lot would be considered equally similar, and those would be 
included, even though they are not relevant to the question. We were using a very small model 
with very clear limitations, particularly the 128 token context length, so we found a different 
model on Hugging Face's Massive Text Embedding Benchmark. We selected 
dunzhang/stella_en_1.5B_v5, as it was the highest performing model that could fit on a single 
GPU in the Nexus class account partition. Although this model's maximum context size is 8192 
tokens, its training samples were limited to 512 tokens, so this is our effective maximum chunk 
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size. In addition, the model supports separate sentence-to-sentence (s2s) and 
sentence-to-paragraph (s2p) embedding modes. In this context, s2s is converting paragraphs to 
vectors that represent their meaning. On the other hand, s2p converts questions to embeddings 
that are similar to answers. This is important as questions just do not have the same meaning as 
paragraphs, so a different translation is required.  
 
Since we were now using a far larger model, we had to use Nexus to do anything regarding our 
RAG solution. Initially, we were using Redis as our vector database, which required a separate 
instance to be running. In order to be able run on Nexus, we changed our implementation to use 
Qdrant instead, as it runs within a python script.  
 
This upgraded RAG system performed better in general, as larger chunks meant a lower chance 
of missing relevant chunks nearby. However, it still did not perform well on the example query 
above. Although the model itself was more accurate, which in this scenario is indicated by 
"python notebook" being considered more similar to "jupyter notebook," since the chunks are 
larger, chunks that mention "Nexus" even more are even closer. In general, with larger chunks, 
precise matches to questions are unlikely, as only a small portion of the chunk will be similar to a 
short question, and the rest of the chunk will change its meaning to be less specific.  
 
As such, the final solution we came up with is to shorten the chunks to about a few sentences or 
~100-300 tokens to maintain the precise meaning of shorter chunks. Each chunk then references 
the full page it came from, and ultimately this is provided as the context. This works for our use 
case specifically, as individual questions can almost always be answered by a single page, and 
the large page is less than 10,000 tokens, which fits in the context window of modern LLMs. 
This gets the best of short chunks and long contexts in our environment.  
 
Finally, the quality of the chat model's output depends on three main factors: the context 
provided, the prompt, and the model itself. The aspect that is the hardest to change and what our 
work has focused on is the context, and thus we will only examine the retrieval results for this 
section. It is far safer to include a bit of extra context instead of potentially missing out on some, 
so we chose to select the top 4 chunks. Since we are retrieving entire pages, there is a chance that 
some or all of the chunks come from the same page. This is ideal, as it means it is very likely that 
the answer is on that page.  
 
Using the same query as before: "how do i run a python notebook in nexus?", the page it is from 
and distance scores of the 4 chunks are shown below, first using the s2s and then using the s2p 
embedding mode. 
 

s2s embedding: 
[('SLURM.html', [0.39104783535, 0.403365552425, 0.406363248825, 0.437749147415])] 
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s2p embedding: 
[('SLURM.html', [0.340046286583, 0.347794413567, 0.348588466644, 0.382137238979])] 

 
We can see that in both modes, SLURM is the only page that comes up, and this is the page that 
tells us how to run Jupyter notebooks on Nexus. We can also see that the s2p embedding has 
lower distance to the retrieved chunks, which is what we expected.  
 

4.3 Fine-Tuning 
 
To fine-tune the model, we used the Llama Factory, an all-in-one platform designed to facilitate 
the efficient adaptation of LLM to specific tasks. Llama Factory integrates a suites of advanced 
training methods (e.g. Llama3, LLaVA, Gemma, etc), enable users to customize the training 
process without extensive coding modifications. In this project, we choose LLaMA3-8B-Instruct 
as the base model. The 8B model could offer robust performance for instruction-following 
(Qusetion-Answer in our dataset), with the computing resources limit given by the Nexus server. 
Besides, the smaller base model accelerates the fine-tuning duration and is easy to update.  
 
The first step was to modify the scraped UMIACS dataset, where we converted the chunked 
UMIACS text into Q/A pairs. To deal with the large volume of text data, we leveraged OpenAI 
API and ChatGPT-4O Mini to automate the generation of questions and corresponding answers. 
Each page of the UMIACS wiki was fed into ChatGPT with a refined prompt that was used to 
generate corresponding Q/A pairs. The next step in the process was LoRA fine-tuning, which 
enabled the efficient update of approximately 12 million parameters in the LLaMA3-8B-Instruct 
base model. The LoRA fine-tuning significantly reduced the training time, 2.5 hours to fine-tune 
on Nexus A5000 GPU, where regular fine-tuning takes more than 4 hours (3 hours are the Nexus 
limit for a single user to run a job using A5000). After the fine-tuning, we deploy the project on 
the Weibu & Hugging Face interface. The sample results are shown in Figure 1.  
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Figure 1. Fine-tuning chatbot results compared to training Q/A pairs. 

 
After the initial round of fine-tuning, several problems were identified. First, the models’ outputs 
were mostly brief and lacked the essential information for the comprehensive response. This 
issue is caused by the training dataset, as the Q/A pairs gendered for fine-tuning were relatively 
short, limiting the model’s ability to produce elaborate solutions corresponding to UMIACS wiki 
related questions. Additionally, the fine-tuned model demonstrated a loss of contextual 
information, as it was trained separately on text, rather than the hierarchical structure in the 
original HTML file. So the background information is missing. Moreover, the image elements 
and information from external links are excluded. In summary, in our first version of fine-tuned 
chatbot, the output quality is considerably low. To overcome these limitations, we propose two 
pipelines illustrated in Figure 2.  
 

 
Figure 2. Fine-tuning improvement pipeline. 
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In the first direction, we adopted an RAG approach to augment the dataset to enhance the 
model’s output performance. In detail, the Q/A pairs were reconstructed leveraging RAG, which 
can provide more detailed and contextually rich answers. By integrating information retrieved 
from the UMIACS wiki during the answer generation process, RAG ensured that the augmented 
dataset captured a broader range of details, including previously omitted contextual elements. 
The augmented dataset, now enriched with comprehensive and context-aware Q/A pairs, was 
used for a second round of fine-tuning. The comparison of the original answreing and the new 
answering are described in Figure 3. The model trained on RAG augmented dataset is much 
longer and elaborated than the original one. 

 
Figure 3. RAG augmented fine-tuning. 

 
The second way to overcome the short-output problem is to use prompt engineering to refine the 
dataset by generating longer and more detailed answers. "Generate as many detailed, specific 
questions and answers as possible based on the provided text, ensuring each is unique and 
directly supported by the content."; "Expand your response by creating multiple detailed, 
context-focused questions and answers, targeting every distinct aspect of the text." such prompts 
were added to the original prompt when generating the Q/A pairs. Under this new dataset, our 
fine-tuned chatbot could able to generate longer content. However, missing the link and image 
information are still there. To solve this, we replace the image with the original website link, 
every time there are some images, we will redirect the user to the original page for details. The 
prompt engineering enhance output is shown below: 
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Figure 4. Prompt Engineering enhanced fine-tuning.  

 
 

5. Evaluation 
 
We conducted an evaluation to compare our chatbot performance against the state-of-the-art 
GPT4o model provided by OpenAI that operates without retrieval augmentation. The baseline 
operated solely on its training and the direct context we gave it, which was the intended 
document for the question we were asking it. This evaluation, then, essentially compares the 
current best solution out there, with a home-made solution using only open-sourced tools. 
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Figure 5: Cosine Similarity for our RAG Chatbot.  
The figure displays cosine similarity of the answers given by the chatbot and its truth source (the 
document the question came from). The graph represents cosine similarity scores for over 700+ 
Q&A pairs. Individual score for each question in blue show considerable variability and the 
rolling average (red) of these scores seem to be stable around 0.3 to 0.45 
 

 
Figure 6: Cosine Similarity for Baseline GPT-4.  

 
The figure displays cosine similarity of the answers given by the GPT4o and its truth source (the 
document the question came from). The graph represents cosine similarity scores for over 2000+ 
Q&A pairs. Individual score for each question in blue show considerable variability and the 
rolling average (red) of these scores seem to be stable around 0.3 to 0.5 
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Figure 7: Comparing Rolling Averages in Cosine Similarity.   

 
Here, we directly compare the rolling averages of cosine similarity scores between the RAG 
chatbot (blue) and GPT4o (red) for the same questions. We see our chatbot hold up with 
state-of-the art results, highlighting the capabilities the RAG and open-sourced tools have in 
providing reliable, contextualized results. 
 
To summarize, our RAG chatbot holds up with current state-of-the-art LLMs in providing 
contextualized answers. The integration of retrieval mechanisms makes this system capable of 
being trusted in providing relevant answers.  
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6. Deliverables 

●​ Structured Dataset: 
○​ A comprehensive dataset containing the scraped information from the targeted 

wiki page. 
○​ Organized in a tabular format (e.g., CSV or JSON) to facilitate further analysis 

and utilization. 
●​ Test Dataset (Q/A Subset): 

○​ A JSON file containing a subset of the scraped data for testing purposes. 
○​ Each entry includes: 

■​ A human-generated question. 
■​ A reference answer from the dataset. 
■​ Ranked top k relevant documents for each question. 

●​ Qdrant Vector Database: 
○​ A vectorized representation of the scraped data, enabling efficient similarity 

searches for question answering. 
○​ Hosted locally or in the cloud, depending on deployment needs. 

●​ Backend Codebase: 
○​ Python scripts that: 

■​ Scrape and process the wiki page data. 
■​ Populate the Qdrant vector database. 
■​ Automate the testing workflow by matching questions with relevant 

documents and reference answers. 
●​ Frontend Codebase: 

○​ A Streamlit application to: 
■​ Query the Qdrant database. 
■​ Display the results, including ranked documents and answers. 
■​ Provide an interactive interface for testing. 

●​ Code Documentation: 
○​ In-code comments explaining the purpose and functionality of each module and 

function. 
○​ A README file describing: 

■​ Installation steps. 
■​ Usage instructions for the backend and frontend components. 
■​ Environment setup details. 

●​ Distribution Documentation: 
○​ Instructions for deploying the backend and frontend components on a local 

system or a cloud-based Nexus cluster. 
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